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Abstract. The Anderson transitions in a random magnetic field in three dimensions are
investigated in detail by means of the transfer-matrix method with high accuracy. Both systems
with and systems without an additional random scalar potential are considered. We find the
critical exponentν for the localization length to be 1.45± 0.09 with a strong random scalar
potential. Without it, the exponent is smaller but increases with the system size and extrapolates
to the above value within the error bars. These results support the conventional classification of
universality classes according to symmetry. The mobility edge trajectory in the random magnetic
field is also obtained.

The metal–insulator transition driven by disorder, which is called the Anderson transition
(AT), has attracted much attention for many years [1, 2]. The critical behaviour of the AT
is conventionally classified, according to the symmetry of the Hamiltonians, into three
universality classes: the orthogonal, the unitary and the symplectic classes. Systems
invariant under spin rotation as well as time reversal form the orthogonal class. The unitary
class is characterized by the absence of time-reversal symmetry. Systems invariant under
time reversal but having no spin-rotation symmetry belong to the symplectic class.

The AT in a magnetic field has been studied extensively, mainly in connection with
the quantum Hall effect [3]. The magnetic field breaks the time-reversal symmetry and
thus all systems under a magnetic field should belong to the unitary class. In fact, it has
been demonstrated numerically in three dimensions (3D) [4] that the critical behaviour
is not sensitive to the strength of a uniform magnetic field. It has been pointed out,
however, that in 3D the AT driven solely by a random vector potential might exhibit
critical behaviour different from that observed in other unitary systems, for example systems
having an additional random scalar potential [5]. Apparently, this questions the validity of
the conventional classification of universality classes in AT. It is thus important to examine
the critical behaviour in both cases with higher accuracy in order to clarify the validity of
the unitary universality class in AT.

The AT in a random magnetic field is driven by the coherent scattering due to a
fluctuating vector potential. A nontrivial feature of this coherent scattering by a fluctuating
vector potential has been pointed out [6] in a theory of strongly correlated spin systems.
Much work has also been done on transport properties in 2D in a random magnetic field,
in particular in connection with the theory of the fractional quantum Hall effect [7] in a
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high magnetic field. It is thus an important issue to understand how the effect of coherent
scattering in a strongly fluctuating random vector potential will show up in the AT.

In the present paper, we investigate the AT in 3D in a random magnetic field by means of
the transfer-matrix method with considerably higher accuracy. In order to see the influence
of the random scalar potential, we consider systems both with and without an additional
random potential. High-accuracy analyses of the AT have been performed by several authors
[8, 9]. In particular, in reference [9] the critical exponent has been accurately estimated for
a system in a uniform magnetic field with a random scalar potential.

The model that we consider is described by the Hamiltonian

H = t
∑
〈i,j〉

exp(iθi,j )C
†
i Cj +

∑
i

ViC
†
i Ci (1)

whereC†i (Ci) denotes a creation (annihilation) operator of an electron at the sitei of a 3D
cubic lattice. The energies{Vi} are distributed independently and uniformly in the range
[−W/2,W/2]. The Peierls phase factors exp(iθi,j ) describe a random magnetic field. We
confine ourselves to considering the phases{θi,j } which are distributed independently and
uniformly in the range [−π, π ]. The hopping amplitudet is assumed to be the energy unit,
t = 1.

We have performed the standard transfer-matrix method [8, 10] with high accuracy and
evaluated the localization lengthξM for the quasi-1D system with cross sectionM × M
[11]. We assume the one-parameter scaling form3M = f (ξ/M) for 3M ≡ ξM/M, where
ξ denotes the localization length atM = ∞. Sinceξ diverges asξ ∼ δx−ν , the scaling
function can be expanded as a function ofδx as

3M = 3c +
∞∑
n=1

an(M
1/ν δx)n. (2)

Here the variableδx measures the distance from the critical point; that is,δx = (E−Ec)/Ec
or (W−Wc)/Wc. In practice, we truncate this series atn = 3. By fitting the scaling function
to the numerical data, we estimate the exponentν and the critical pointEc or Wc.

For the transition at the band centre, a clear scaling has been observed for curr-
ently achievable sizes. We have estimated the critical disorder and the exponentν to
beWc = 18.80± 0.04 andν = 1.45± 0.09 [11]. The renormalized localization length3c

at the critical point is 0.558± 0.003.
In contrast, forW = 0 or for an additional weak random scalar potential(W = 1),

the critical point lies near the band edge, where the density of states changes rapidly as
a function of energy. Through a careful analysis of the numerical data near the critical
point for W = 0 andW = 1, we have found [11] that the correction to the scaling is not
negligible for the transitions near the band edge.

Here we show, in table 1, a summary of the results forW = 0 obtained by means
of fittings with different sizes including larger system sizes up toM = 16. The relative
accuracy inξ−1

M achieved forM = 14 andM = 16 is 1% for each sample, and seven
and five realizations of random phases are considered, respectively. The scaling regime is
assumed to be the same as in reference [11]. It is clear that a critical pointEc exists at
around 4.41 (see figure 1). The exponentν tends to increase with the system size and is
likely to saturate forν ∼ 1.48. This size dependence, which is due to finite-size correction
to the scaling, has also been observed forW = 1 [11]. Within the error bars, the estimated
values ofν for M > 12 are consistent with 1.45±0.09 obtained for the band centre as well
as 1.43±0.06 estimated for in the uniform magnetic field [9]. No evidence has been found
for ν ≈ 1 which was suggested by calculations with low accuracy [5]. The present results
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Table 1. Results for3c, ν andEc obtained by means of fits using the data for two system sizes
M1 andM2 for W = 0. HereQ stands for the standardQ-value used in theχ2-fit [14].

(M1,M2) 3c ν Ec Q

(6, 8) 0.514± 0.005 1.05± 0.07 4.414± 0.001 ∼ 10−5

(8, 10) 0.516± 0.007 1.26± 0.09 4.414± 0.001 ∼ 0.89
(10, 12) 0.51± 0.01 1.32± 0.12 4.414± 0.001 ∼ 0.99
(12, 14) 0.56± 0.02 1.49± 0.16 4.409± 0.002 ∼ 0.99
(14, 16) 0.48± 0.02 1.475± 0.19 4.417± 0.002 ∼ 0.61
(12, 16) 0.53± 0.01 1.46± 0.09 4.413± 0.001 ∼ 0.99

Figure 1. The renormalized localization length forW = 0 as a function of energy. The dots,
the crosses, the triangles, the squares, the diamonds and the circles correspond toM = 6, 8, 10,
12, 14 and 16, respectively.

support the universality of the critical exponent in the unitary systems. The positions of the
critical points and the values of3c estimated with different combinations of system sizes
are fluctuating forM > 12 (table 1). The value of3c = 0.558± 0.003 at the band centre
seems to lie inside the range of this fluctuation. Conventionally, the value of3c is also
expected to be universal in unitary systems. Our results obtained here seem to be consistent
with this universality of3c.

We also estimate the critical points for various values of the energyE and disorder
W (figure 2). The critical points (mobility edges) are estimated on the basis of numerical
data by the transfer-matrix method withM = 6–10. It should be noted that there exist
extended states for energies larger than the critical energyEc ≈ 4.41 forW = 0. This type
of re-entrant phenomenon in the energy–disorder plane has been commonly observed for
systems with a uniform distribution of a random scalar potential [12, 13]. It is interpreted
[12] as indicating that the enhancement of extended states for a weak additional random
scalar potential is due to the enhancement of the density of states for that energy regime.

In summary, we have investigated the AT in a random magnetic field numerically. By
performing the transfer-matrix method with high accuracy, we have found that the correction
to the scaling is not negligible for the currently achievable sizes for the transitions near the
band edge. The exponents estimated forW = 0 for larger system sizes are consistent with
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Figure 2. The mobility edge trajectory in 3D in the random magnetic field.

those obtained for other unitary systems within the error bars. From the size dependence
of ν, in contrast to the suggestion in reference [5], no evidence has been found forν ≈ 1.
The mobility edge trajectory has also been obtained in the presence of a random magnetic
field. Its qualitative shape turns out to be similar to those obtained for other systems with
a uniform distribution of a random scalar potential.
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[13] Dröse T, Batsch M, Zharekeshev I and Kramer B 1998Phys. Rev.B 57 37
[14] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992Numerical Recipes2nd edn (Cambridge:

Cambridge University Press)


